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ABSTRACT

The work described in this paper is part of an Electric Power Research
Institute sponsored effort to improve rotor vibrational performance on power plant
feed water pumps. A major objective of this effort is to reduce vibration levels by
devising inter-stage sealing configurations with optimized damping capacity, realizing
that the typical multi-stage centrifugal pump has several more inter-stage fluid
annuli than it has journal bearings. Also, the fluid annuli are distributed between
the journal bearings where vibration levels are highest and can therefore be
"exercised" more as dampers than can the bearings. Described in this paper is a
test apparatus which has been built to experimentally determine fluid-annulus
dynamical coefficients for various configurations of inter-stage sealing geometry.

INTRODUCTION

As originally cited in an Electric Power Research Institute survey on feedwater
pump outages, Reference (I), excessive vibration is responsible for many power plant
forced outages. The major cause of this excessive vibration is now widely recognized
as the fluid dynamical forces generated within high-head centrifugal pump flow
passages. These dynamical forces are a natural by-product of the high rate of energy
transfer to the fluid within a relatively small space and the fact that this transfer
of energy cannot, of course, take place at I00 percent efficiency. The farther away
from the best efficiency flow a feed pump is operated, the stronger these dynamical"
forces become, particularly under the low-flow conditions required at part-load
operation. Hydraulic excitation forces will remain an inherent feature of feed pumps.
Further research on pump hydraulics may possibly reduce their intensity, but their
elimination as an important practical consideration would appear to be unlikely. The
most .promising approach is to optimize system damping, the classical approach when
the dynamical forces are not adequately controllable.

One of the approaches presently being pursued is to devise high-damping inter-
stage fluid-annulus configurations, Reference (2). The typical multi-stage centri-
fugal pump has several more inter-stage fluid annuli than it has journal bearings
(see Figure I). Also, the fluid annuli are distributed between the journal bear-
ings where vibration levels are highest and can therefore be exercised more as
dampers than can the bearings.
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As shown in Reference (3), wear-ring geometry is already known to be a poten-
tially major influence on critical speeds. Currently used geometries are shown in
Figure 2, with some type of serrations often preferred to accommodate rubs.

However, some pump manufacturers have employed smooth or shallow groove geometries

to utilize the resulting radial stiffening effect which can raise the first crit-

ical speed considerably above the operating speed. However, as also shown in

Reference (3) (see Figure 3), this sti£fening effect (called "Lomakin" effect)

deteriorates with wear, which can cause high vibration levels after several hours

of normal operation. In spite of the attention this potential stiffening effect

has received, practically no attention has been given to the potential damping

capacity of interstage fluid annuli. Raising or lowering critical speeds can not

c_rcumvent the undesireable effects of ]arge hydraulic excitation forces but proper-

ly adjusted damping can.

ROTOR VIBRATION DAMPING EVALUATION

A linearized vibration mathematical model is generally the appropriate start-

ing point to study and understand rotor vibration characteristics. In the presence

of vibration, an interactive dynamic radial force occurs where there is a close
running clearance filled with a liquid or gas (e.g., journal bearings, seals,

wear-ring clearances). Such interactive forces are commonly characterized in a

linear model as shown in the following matrix equation.

fx = _ xx xy x _ xx

Lyx yy.] Y L. yx

(1)

Here, [K], [B] and [D] are the stiffness, damping and virtual mass matrices, re-

spectively, of the entrapped fluid within the close-running radial clearance.

(x,y) _s the instantaneous rotor-to-stator radial displacement vector with respect

to static equilibrium and (fx,fv) the instantaneous radial dynamic force vector.
Presently, there is little reliable information on the dynamic matrix coefficients

for feed pump fluid annuli.

To evaluate and compare damping capacity of various fluid-annulus geometries,

it is a considerable simplification if harmonic motions are used. First of all,

this provides a convenient way to absorb the [D] matrix into the [K] matrix as

commonly done.

[K] : [K] - R2[D] (2)

Here, _ is the frequency of the orbital vibration (see Figure 4). As described in

Reference (4), the [B] and [K] matrices are non-symmetric for journal bearings and

other fluid annuli contained within a rotating and non-rotating boundary. To

separate out conservative and non-conservative (damping) effects, the [B] and [K]

matrices are decomposed into symmetric and skew-symmetric parts.

BS
ij]

1
[ = _ + , symmetric (positive damping)[Bij Bji]

[B_]Ij : ½ [Bij - Bji] , skew-symmetric (contributes no damping)
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s ½[Kij] : [Kij + Kji] , symmetric (contributes no damping)

KSS] = 1ij_ [Kij - Kji] skew-symmetric (negative damping)
(3)

The instantaneous non-conservative interactive force vector on the rotor can there-

fore be expressed as follows.

{p} = - [Bs]{x} - [KSS]{x} (4)

The net energy imparted to the rotor (at a fluid annulus) per cycle of orbital
motion can therefore be expressed by evaluating the integral of the non-conservative

force vector, {P}, with the differential radial displacement over one period of

harmonic motion, expressed as follows.

E
cyc =_{P}-{dX}

X2 s 2 2Kss sin - ey)]= - _ [_(B_x + ByyY ) - xy (ex (5)

Here, x and y are the principal coordinates of [BS], and X and Y the corresponding

single-peak amplitudes, and (ex, ey) the respective phase angles.

For any co-rotational orbit sin (ex - Oy)>O. Furthermore, if as with journal

bearings, B_x, B_v and K_ are all positive, one sees the presence of both positive
and negative dam_ping effects on forward whirls. It is clear from equation (5) why

rotor-bearing instability always occurs as a co-rotational or forward whirling
vibration.

A compact way to evaluate the net damping capacity of a fluid annulus (or

journal bearing) is to determine Ecyc as a function of vibration-to-speed frequency

ratio. For example, trends of jourhal bearing damping (Ecyc) are shown in Figure

5, which is an alternate way of explaining why rotor-bearing instability occurs

when the lowest rotor-bearing resonance frequency is below the zero-damping cross-

over frequency ratio. A similar approach for evaluating net damping capacity of

interstage fluid annuli could be employed if the dynamic coefficients were known.
Also, predictive analyses of feed pump vibration in general would be considerably

advanced with reliable dynamic coefficients. A test rig has been designed and

built to experimentally determine the [D], [B] and [K] matrix coefficients under
operating conditions in feed water pumps.

TEST RIG AND GOVERNING EQUATIONS

Under Electric Power Research Institute sponsorship, a test rig has been designed

and built to experimentally determine the dynamic coefficients of currently used and

newly devised inter-stage fluid-annulus configurations. Testing is currently in

progress and the results will be published when the work is completed.

A conceptual sketch of the test rig is shown in Figure 6, and a detail layout

of the actual rig is shown in Figure 7. The concept employed in the design of this

rig follows directly from the governing equations which relate the interactive
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dynamic force components and the components of relative radial harmonic motion.
As developed in Appendix A of this paper, twelve independent equations are needed
which relate the force and motion parameters to the twelve dynamic coefficients.
These equations are summarized below for the harmonic circular orbit, which is the
vibration mode built into the test rig eccentric-spindles design.

= - + _Dxx - _.B(F x cos Ox)/R - Kxx _jBxx j xy

+ K - _D
(F x sin ex)/R = - _jBxx xY J xy

(FycosOy)/R:- + -Byy j

(Fy sin Oy)/R = - _jBy x - Kyy - _Dyy

(6)

where, j = 1,2,3

The controlled parameters are X and Y, the single-peak vibration amplitudes

and their respective phase angles @x and ¢y. The measured parameters are Fx and Fy,
the single-peak dynamic force amplitudes and their respective phase angles, ox and-
Oy. As implied by equations (6), test data is needed at three different vibration
frequencies for a given operating condition. That is, one needs twelve independ-
ent equations to solve for twelve unknowns. This necessitates independent control
over rotational speed and vibration orbit frequency.

There are basically two experimental approaches one could take: (i) impose
dynamical forces and measure displacements, or (ii) impose dynamical displacements
and measure the forces. With currently available measurement techniques, the
second approach is potentially more accurate, and has been used in our design.
The test rig is configured around a double-spool spindle, with the inner spindle
having an adjustable run-out or eccentricity with the outer spindle (Figures 6 and
7). Rotation of the outer shaft therefore causes the rotational centerline of the
inside shaft to experience a circular orbit with a precession frequency of the
outside shaft's rotational speed. The rotational speed of the inside shaft is the
test rotational speed. Independent control over vibration frequency and test speed
is therefore accomplished. The same approach is now being used (see Reference (5))
to experimentally determine the linearized spring and damping coefficients for low
specific speed centrifugal pump stages. As the shaft-to-shaft eccentricity is
adjusted, it can be measured with extreme accuracy using an LVDT or even a precision
dial indicator while slowly rotating the outer shaft by hand.

The test ring is rigidly supported in the radial plane by four piezoelectric
load cells (see Figures 6 and 7), two in each of the x and y mutually perpendicular
directions which allow variation of orbit-center eccentricity. The necessary
advantage of piezoelectric load cells is that they are extremely stiff and therefore
keep test ring vibration amplitudes negligible and therefore unnecessary to measure.
Strain gauge load cells would not be a feasible option here because they require
displacement to sense load.

The test ring is contained within a pressurized chamber. The test ring divides
the chamber into high and low pressure compartments. The difference in pressure
between these two compartments is controlled to the desired test pressure drop
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across the fluid annulus, with a maximumaxial pressure drop of 500 psi through the
test annulus. The test ring is supported axially on fluid film hydrostatic thrust
faces which introduce no extraneous radial loads. The test ring is attached to the
four load cells by four leaf springs which are soft in the circumferential direc-
tion but stiff in the radial and axial direction. This type of construction allows
the fluid reaction torque on the test ring to be equilibrated by the test ring
support, without introducing extraneous radial forces on the test ring. The closure
head of the pressurized chamber is easily removedas is the test ring and test
journal• This provides for quick interchange of the various fluid annulus config-
urations to be tested and modified.

It is essential that the radial run-out of the test journals which results from
inner shaft rotation be as close to zero as is possible to manufacture. This was
accomplished in the final machining operation on the test journals by grinding them
while they were rotated (inner shaft rotated, outer shaft fixed) in the final
assembled double-shaft spindle.

For any given annulus configuration (i.e., diameter, axial width, clearance
and surface geometry) the basic operating parameters are rotational speed, water
temperature, static eccentricity and axial pressure drop across the test annulus.
The effects of each of these parameters will be determined by varying them through
ranges encountered in actual feed pumpapplications.

CONCLUSIONS

The importance of inter-stage fluid annuli to rotor dynamical performance of
high-head feed water pumpswarrants developmental efforts by the pumpmanufacturers
in this area. The test rig described in this paper has recently comeon-line and
is just beginning to provide reliable data on inter-stage fluid-annulus dynamic
coefficients. Currently used configurations as well as newly devised high-damping
configurations are being tested. By the end of this year, we anticipate the comple-
tion of the testing that is presently planned• Weexpect to be able to recommend
inter-stage clearance geometries which will provide considerable additional rotor
vibrational damping capacity for feed water pumpand other multi-stage centrifugal
pumpapplications.
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Appendix A

GOVERNING EQUATIONS WHICH RELATE EXPERIMENTAL MEASUREMENTS
TO FLUID-ANNULUS DYNAMIC COEFFICIENTS

A.I DEVELOPMENT OF GOVERNING FORCE DISPLACEMENT EQUATION

Postulating harmonic motion, equations for rotor system vibrations can be expressed
using phasor notation as follows.

f = F e i(Rt+6x) , f = F ei(_t+SY )
x x y y

x = Xei(Rt+ex) , y = yei(_t+eY )

x = i_x , y = i_y
(A-I)

°. °°

x = - _2x , y = -_2y

For the general linear case, the force-motion equations are given in expanded form
as follows.

• °,

f = - K x - B x - D x -
X XX XX XX <xl-=xi-Ox/

" "" yy Dy'"%=- %xX-%xx-%xx-%/- By - /
(A-2)

Using harmonic motion, equations (A-I), the force-motion equations (A-2) then can
be simplified as follows.

f : (-K -i_B
X XX XX

fy= (-%x- i_%x

+ _2Dxx)X + (- Kxy - i_Bxy + _2Dxy)Y

+ _2Dyx)X + (- %y - i_Byy + _2%y)y

(A-3)

Using the phasor form, (A-I), and dividing through by e-i_t gives the following.

FxeieX = (- Kxx - i_Bxx + _2Dxx)XeiCx +

• Dxy)yeiCy(_ Kxy _ i_Bxy + _2

• x)XeiCXey = (_ K _ i_By x + _2Fyel yx Dy +

- f _2Dyy)yeiCy(-Ky i_%y

Recalling from basic phasor convention, e iO
(A-4) take the following form.

= cos o + i sin o.

(A-4)

Therefore, equations
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F (cos o +
x x

sin : _ + _2Dxx)X0x) (- Kxx i_Bxx

(cos @x + sln @x ) = (- Kxy - i_Bxy + _2Dxy)Y

(cos @y + sln ¢y)

F (cos 0 +
Y Y

sln
Oy) = (- Kyx - iRBy x + _2Dyx)X

(cos ¢x + - + _2Dyy)Ysln @x ) + (- Kyy i_Byy

(cos @y + sln @y)
(A-5)

The two complex equations of (A-5) can be segregated by real and imaginary parts

to obtain four real equations. Since there are twelve unknowns (i.e., the stiff-

ness, damping and inertia coefficients), experimentally measured inputs to these

equations must be obtained at three different vibration frequencies (i.e.,

_j, j _ 1,2,3) for a given operating condition. This leads to the following
generaJ form of the governing equations.

Fx cos 0x : [(_]Dxx - Kxx) cos ¢x + Bxx_j sin @x]X

+ [(_]Dxy - Kxy) cos @y + Bxy_ j sin @y]Y

Fx sin ox = [(_Dxx - Kxx) sin @x - Bxx_j cos @x]X

+ [(_Dxy - Kxy ) sin ¢y - BxyR j cos @y]Y

Fy cos Oy = [(_Dy x - Ky x) cos @x + Byx_j sin @x]X

+ [(_Dyy - Kyy) cos @y + Byy_j sin @y]Y

= _ yx )Fy sin Oy [(_Dy x D sin @x Byx_ j cos @x]X

+ [(_Dyy - Kyy) sin @y - Byy_j cos ¢y)Y (A-6)

where, j = 1,2,3.

As explained in the main text of this paper, the test rig has been designed to

provide a controlled harmonic circular orbit of radius R. That is,

= 1T
X = Y = R and @y -_x -

Therefore, cos @Y t=osin @x and sin dpy = - cos @x. Furthermore, all phase anglescan be referenced the x-component-of vibration (i.e., @x - 0). Implementing
all these simplifications, reduces equations (A-6) to the following.
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- + _2D
(Fx cos Ox)/R = - Kxx _jBxx j xx

+ K - _2.D
(Fx sin ex)/R = - _jBxx xy j xy

(Fy cos 0y)/R = - Kyx + tiDy x - Byy_j

- 2D
(Fy sin ey)/R = - _jBy x - Kyy _j YY

where, j = 1,2,3

(A-7)

A.2 EXPERIMENTAL ERROR CONSIDERATIONS

Equations (A-7) provide twelve equations in twelve unknowns. The orbit of vibra-

tion, R, and its frequency are controlled by the design of the test rig. The

single-peak dynamic force amplitudes (Fx, Fy) and the associated dynamic force

phase angles (ex, ey) are measured. The remaining twelve unknowns are the dynamic
coefficients. Close examination of equations (A-7) will reveal that the first

two sets of equations are coupled only to each other, while the third and fourth

sets of equations are individually decoupled from the other equation sets. This

is a result of the basic approach of using a controlled circular orbit vibration.
An additional advantage is thereby provided since one does not have to actually

solve a single system of twelve equations. Instead, solution requires individual

solution of one system of six equations and two systems of three equations. This

simplification tends to reduce the affinity for amplification of experimental
error in the equation solution step of the overall scheme for determining the

dynamic coefficients.

As fully shown, experimental data is required at three different frequencies for

a specific operating condition in order to recover the twelve dynamic coefficients

from the governing equations. Therefore, in theory, any three sufficiently differ-

ent frequencies should yield the same dynamic coefficients for a given operating

condition. The experimental setup therefore inherently provides a means for

determining the overall inaccuracy of the experimentally determined coefficients.

That is, one can obtain data at say ten (or more) different vibration frequencies

and then determine the dynamic coefficients with the data from all unique combina-

tions of three different frequencies out of the total of ten (or more) frequencies
available. The difference in answers between the different combinations is the

experimental spread or error. Experimental error will come from two basic sources:
(i) measurement inaccuracies, and (ii) non-linearity in the actual force-displace-

ment phenomenon. These two sources of error will tend to work in opposition.

That is, measurement inaccuracies can be minimized by using "larger" vibration

amplitudes, thus making the measured response forces larger and therefore easier

to measure accurately. However, the larger the vibration amplitude, the more

significant becomes the non-linearities, which are neglected in the governing

equations. Therefore, for each operating condition there will be an optimum
orbital vibration radius which minimizes the experimental error, being large

enough to obtain good measurements, but not too large to produce significant non-

linearities. The test rig spindle is designed to that the orbital vibration radius
can be varied, specifically so that error can be minimized.
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Figure I. Twelve-stage boiler feed

pump rotor; cane run no. 6 station,

Louisville gas and electric.
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Legend:

1 - Test rotating element
2 - Test annul us ring
3 - Piezoelectric load cell
4 - Hydrostatic axial ring support
5 - High-pressure compartment
6 - Low-pressure compartment

7 - Inner spindle rotor
8 - Outer spindle rotor
9 - Spindle housing

I0 - Support base
II - V-belt pulley
12 - V-belt pulley

Figure 6. - Conceptual sketch of double-spool spindle fluid-annulus test rig.

Figure 7. Detail layout of double-spool spindle fluid-annulus test rig.
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